I was invited speak at the Maths Mastery conference in London last month. My essential brief was to engage with using technology to support mathematics learners. I have increasingly wanted to take a wide view of things so I interpreted technology very liberally. Having trained teachers in using graphing calculators for both TI and HP for many years, I am well versed in the language of multiple representations. The possibility is there to see a function represented graphically, symbolically and as a table of values and to swap quickly between them and to see how each representation gave you different insights into the nature of the function.

For example, a linear function has a particular algebraic form, it has a straight line graph and a table of values with a common difference. We exploited all of these in our Pizza project, showing that the natural tendency when watching change over time (the declining temperature of a cooling pizza) is to look for a linear change. The difference is roughly equal over the minute intervals we used, for the 10 minute length of the experiment. This is forcefully confirmed visually when a real time graph being drawn is very nearly a straight line. So, we feel empowered to hypthesise a linear function which symbolically can be used to calculate extrapolations. It is these that undermine our initial thoughts (put time = 24 hours into the function and we quickly see there is something wrong). Then we can go back to the graph and change the axes to see the nature of the slight curve and look again at the nature of the differences from equal differences, which themselves have a pattern.